Weitere Blogs von Eduard Heindl

Innovationsblog neue Ideen | Some Science my research | Energiespeicher Bedeutung und Zukunft | Energy Age the big picture (engl.)

Samstag, 30. Dezember 2017

LCOS Levelized Cost of Storage - Preis für Speicher

Vergleich der Speicherkosten

Die Kosten von Energiespeicher zu vergleichen, ist alles andere als einfach. Das liegt daran, dass die bekannten Speicher, wie Batterien, Pumpspeicher oder Gravity Storage bis zu Power to Gas, sehr unterschiedliche Preise und Wirkungsgrade haben.
In diesem Post will ich das international übliche Vergleichsverfahren LCOS erläutern und auf die Probleme bei der Berechnung hinweisen.

Wo die Kosten entstehen

Auf den ersten Blick sehen viele nur den Anschaffungspreis (CAPEX) für einen Speicher. Aber bereits dieser ist nicht trivial zu bestimmen, denken wir nur an einen Pumpspeicher, der gebaut werden muss. Vielleicht liegen zehn Jahre von der Investitionsentscheidung bis zur ersten Stromlieferung, eine Zeit in der viel Geld ausgegeben wird. Hätte man das Geld in dieser Zeit nicht besser anlegen können, etwa mit 5% Verzinsung? 
Um diesen Effekt zu berücksichtigen, wird der abgezinste Preis für die Zukunft ermittelt. In einem einfachen Fall wäre ein Speicher, der 1000 Euro kostet, aber erst nach einem Jahr benutzt werden kann, mit einem "Kaufpreis" von ~1050 Euro anzusetzen.

Ist der Speicher in Betrieb, entstehen laufende Kosten (OPEX), etwa für Wartung und Betrieb, aber auch für die Miete der Fläche. Steht ein Speicher in der Wohnung und benötigt 1 m² Platz, muss man fairerweise die Mietkosten pro Monat, etwa 5 €/m² umlegen, so dass der Speicher im Jahr alleine 5*12 = 60 € Raummietkosten verursacht!

Ein Stromspeicher hat nie einen 100% Wirkungsgrad. Da der Strom, der eingespeichert wird, nicht kostenlos ist, auch wenn gerne das Gegenteil behauptet wird, muss man die Kosten für den Strom, der während des Speichern verloren geht, berücksichtigen. Hat man etwa eine LiIon Batterie, die Strom aus der eigenen PV Anlage aufnimmt, so kann man für den Strompreis 10 ct/kWh ansetzten und einen Wirkungsgrad des Speichers, gemessen auf der Seite des Wechselstroms, von 90% annehmen. Mithin entstehen pro Speicherzyklus in einem 10 kWh Speicher 10 ct Kosten aufgrund des internen Stromverlusts.

Für viele Berechnungen ist aber der verlorene Zins eine der teuersten aber auch am schwierigsten zu verstehenden Größen. Bei einer Investitionsentscheidung will jeder Unternehmer eine Rendite, die höher ist, als die Rendite, die er bei der Bank bekommen würde. Da jede Investition einen Gewinn erwirtschaften soll und mit Unsicherheiten behaftet ist, wird kalkulatorisch eine Verzinsung angenommen, die relativ hoch erscheint, aktuell häufig 8%.
Man bedenke, ein Speicher könnte kaputt gehen, zukünftig könnte ein anderer Bedarf entstehen oder ein wesentlich billigerer Speicher auf den Markt kommen. In jedem dieser Fälle wäre die erwartete Rückzahlung gefährdet und dagegen "Versichert" sich der Unternehmer mit einer geplanten Rendite.

Genaue Berechnung 

Für eine genaue Berechnung der Kosten für das Speichern einer kWh Strom (oder MWh, die im Strommarkt übliche Größe) muss man daher viele Faktoren vorab wissen. Die Wichtigsten sind:

  • Strompreis des einzuspeichernden Stroms (P_elec-in)
  • Wirkungsgrad des Speichers (u(DOD))
  • Kaufpreis des Speichersystems (CAPEX)
  • Lebensdauer des Speichers (N Speicherlebensdauer in Jahren)
  • Anzahl der Speicherzyklen (#cycles)
  • Erwartete Rendite (r Zinssatz)
  • Betriebskosten (O&M
Hat man alle diese Größen zusammen, kann man eine erste einfache Rechnung machen:

                      Alle Kosten
Kosten pro kWh = ---------------------
                  gespeicherter Strom


So einfach diese Formel erscheint, so kompliziert wird sie, wenn man die zukünftigen Einnahmen und Ausgaben finanztechnisch richtig einsetzt. Dann wird etwa eine kWh, die man erst in 5 Jahren speichert, kleiner als gedacht, da man ja alles für die Zukunft abzinsen muss (Stichwort: Rendite). 

Dieses Abzinsen kann man durch eine Summenformel beschreiben, die da lautet:


Ausführliche Formel zum Berechnen der Speicherkosten nach Apricum.
Ich gehe mal davon aus, dass die meisten beim Erblicken dieser Formel in ehrfürchtiges Erstaunen versetzt werden. Aber genaugenommen steht da nicht mehr drin, als ich bisher angesprochen habe, nur in einer, für mathematisch geübte, klaren Schreibweise. 


Auswertung LCOS mit Beispielen


Praktischerweise kann man so eine Formel mit etwas Geduld in Excel eingeben und dann losrechnen. Dies habe ich zusammen mit Experten vom Imperial College in London, insbesondere zu erwähnen Herrn Schmidt [1], gemacht und dabei für einige Systeme die Resultate ermittelt. 

Vergleicht man wichtige Speichersysteme erhält man die folgenden Resultate:
Vergleich LCOS für verschiedene Speichersysteme [1]
In der Grafik sieht man, dass Gravity Storage und Compressed Air Speicher nahezu die gleichen Anschaffungskosten (CAPEX) haben, aber die Speicherkosten bei einem Gravity Storage System niedriger liegen, da der Wirkungsgrad dort höher ist und somit weniger Strom (P-elec) in das System eingespeichert werden muss um gleichviel Strom später zur Verfügung zu haben.

Für die Rechnung wurden folgende Annahmen getroffen:


Verwendete Daten für die Berechnung oben. [1]

Wie stark die Auswirkung der Rendite (Zinssatz) sind, sieht man, wenn man mit 4% Zins statt 8% Zins wie oben gezeigt, rechnet.


Veränderung des LCOS bei 4% Zins. [1]

Obwohl alle anderen Kosten unverändert sind, fallen die Speicherkosten für manche Systeme, wie Pumped Hydro (Pumpspeicher) deutlich ab. Hingegen bleiben die Kosten bei Batterien relativ hoch. Woran liegt das? Der Grund liegt in der Bauzeit, während Batteriesysteme innerhalb eines Jahres am Netz sein können, benötigen Systeme mit mehrjähriger Bauzeit viel Kapitalvorlauf bis die ersten Einnahmen kommen. Sind die Zinsen niedrig, hat das aber nur eine geringe Bedeutung.

Fazit

Ich hoffe, an dieser Stelle ist klar geworden, dass die Berechnung der Kosten für Speicher, insbesondere wenn sie als Investition eines Unternehmens getätigt werden, nicht leicht zu bestimmen sind, aber dass es bekannte Verfahren gibt diese Kosten genau zu berechnen.

Viele private Nutzer von Batteriesystemen werden so eine Rechnung selten machen, es geht da oft um das gute "Gefühl" einen Speicher für den eigenen Strom zu haben, das kann aber leider nicht in einer Rechnung abgebildet werden.


Anmerkungen:
CAPEX = capital expenditures (Kapitalkosten)
LCOS = Levelized Cost of Storage (Gewichtete Kosten des Speicherns)

OPEX = operating expenditures (Betriebskosten)

Quellen:
[1] Schmidt, 2017, report: Levelized cost of storage

Mittwoch, 20. Dezember 2017

Pumpspeicher zwei Tagungen

Der Bedarf an Pumpspeicher 

Im Jahr 2017 war ich auf zwei Pumpspeicher Tagungen, "Pumpspeicherwerke" in Essen am 10. Juli 2017 und am 29/30 November auf der 3. Internationalen Pumpspeicherkonferenz in Salzburg, die Ergebnisse sind etwas widersprüchlich und ich will sie in diesem Blogbeitrag diskutieren

Internationale Verteilung von Pumpspeicherwerken.

Pumpspeicher in Deutschland

Die deutschen Pumpspeicher haben eine Kapazität von 40 Gigawattstunden und eine Anschlussleistung von 6 GB, dies sind gewaltige Zahlen allerdings im Verhältnis zum Stromsystem eher klein, die Leistung ist etwa ein Zehntel des deutschen Stromverbrauchs und die Kapazität könnte noch nicht einmal eine Stunde lang Deutschland mit Strom versorgen (Falls die Leistung reichen würde).

Die Aufgabe der Pumpspeicher lag aber in ihrer ursprünglichen Funktion nicht darin, Deutschland etwa über Nacht mit Strom zu versorgen wenn die Sonne nicht scheint, sondern Ausfälle von Kernkraftwerken zu managen oder Spitzenlasten in der Mittagszeit, die insbesondere durch das Einschalten vieler Elektroherde früher entstanden sind, abzudecken.

Rene Kühne zur Entwicklung des Spotpreis, die Spitze am Mittag ist verschwunden. (Folien)

Heute hat sich das Bild massiv gewandelt. Tagsüber trägt die hohe Zahl an Photovoltaik-Anlagen, mit etwa 40 GB installierter Leistung, erheblich zum Abbau von Strombedarfsspitzen bei. Wenn auch nicht immer, insbesondere natürlich im Winter wenn es sehr bewölkt ist und nur wenige hundert Megawatt von der Photovoltaik erzeugt werden. Dies führt dazu, dass der Strompreis nicht mehr so stark schwankt wie früher und genau deshalb haben die Pumpspeicher Betreiber ein erhebliches Problem ihre Anlagen zu finanzieren.

Es ist inzwischen soweit, dass selbst fertige Anlagen kaum mehr den Erlös bringen um den Betrieb aufrecht zu erhalten. So gaben einige Sprecher auf der Tagung in Essen an, dass im Fall einer größeren Revision, etwa den Austausch einer Turbine, das Kraftwerke eigentlich aus wirtschaftlichen Gründen stillgelegt werden müsste.

Dies hätte natürlich erhebliche Folgen für das Stromnetz, denn die Pumpspeicher dienen eben auch zur Stabilisierung des Netzes und sollen zukünftig ja Solarstrom und Windstrom puffern um zu anderen Zeiten des Bedarfs die entsprechende Energie zur Verfügung zu stellen.

Einige steile Thesen zur Wirkung von Pumpspeichern, vorgestellt von Peter Stratmann (Folien)

An einen Neubau ist daher in Deutschland praktisch überhaupt nicht zu denken, was auch dazu führte, dass das bekannte Projekt Atdorf im Südschwarzwald, gestoppt wurde, obwohl bereits 60 Millionen Euro für die Planung ausgegeben wurden.

Ausbau der Pumpspeicherwerke ist fast zum Erliegen gekommen, dargestellt als gelbe Kreise, Reinhard Fritzer, ILF (Folien)

Pumpspeicher in Österreich

Anders die Situation in Österreich, dort stehen wesentlich mehr Pumpspeicherkraftwerke, insbesondere was die Speicherkapazität betrifft. Diese kommt von den großen Gefällen in den Alpen um den erheblich größeren Staumauern und damit Speicher.
Auf der Internationalen Pumpspeicher Tagung in Salzburg wurden die berühmte Anlage der Illwerke von Professor Helmut Jaberg vorgestellt. Ein Pumpspeicher mit über 800 m Fallhöhe und über einen Gigawatt Leistung.

Das Verhältnis Speicher zu Turbine ist in Österreich und in der Schweiz größer, womit länger gespeichert werden kann.
Durch die große Speicherkapazität können auch Überschüsse, wie sie aus längeren Starkwind-Perioden kommen aufgenommen werden, wenn die Leitungen ausreichen. Bei Flaute kann die Energie dann abgerufen werden und teurer verkauft werden.

Dies wird in den Medien oft irreführend dargestellt, als ob wir Strom ans Ausland verschenken und teuer wieder importieren. Nein, da liegt eine Dienstleistung dazwischen, dass die Energie gespeichert wird und genau dann geliefert wird, wenn wir Bedarf haben!

Einnahmequellen für Speicher

Die sehr flache Preiskurve für Strom kann Speicher aktuell nicht finanzieren, aber es gibt auch andere Einnahmequellen für Speicher, etwa der Regelenergiemarkt. Dabei wird kurzfristig Energie bereitgestellt oder aufgenommen, um das Netz zu stabilisieren.

Regelenergie ist eine weitere Einnahmequelle für Pumpspeicher.

Im Vortrag der Beratungsfirma BET aus Aachen wurden weitere Einnahmequellen vorgestellt.

Verschiedene Einnahmequellen für Speicher
Das Problem sind aber oft die gesetzlichen Regelungen, die es sehr schwer machen alle Märkte fair zu behandeln. Hier zeigt sich oft, dass unsere Energiegesetze immer noch zu stark von der Denkweise im alten Energiesystem dominiert sind. Zudem wird der Transport von Energie nicht abgebildet, alle Preise gelten flächendeckend für Deutschland, obwohl vielleicht in Norddeutschland ein Überschuss und in Süddeutschland ein Mangel an Strom vorhanden sein kann.

Die Lastgradienten wachsen in den letzten Jahren, daher ist schnelle Regelleistung erforderlich. 

Eine Alternative zu Speichern ist der Netzausbau, aber der geht leider sehr schleppend voran, so dass langfristig viel Energie, die aus Wind und Sonne kommen, nicht den Verbraucher erreicht.

Netzausbau, erst 3% sind 2016 geschafft, Folie Team Consult.

Fazit

Pumpspeicher alleine in einem Stromsystem zu betrachten ist nicht zielführend. Zukünftig müssen alle Komponenten eines modernen Stromnetzes zusammenarbeiten. Wind, Off- und Onshore, PV, Leitungen, Speicher in Deutschland aber auch jenseits der Grenze und das am Besten mit fairen Regeln für alle Beteiligte.

Mehr Konferenzberichte:
http://energiespeicher.blogspot.de/2013/11/konferenzberichte.html

 


Samstag, 24. Juni 2017

Unterirdische Pumpspeicher

Unsichtbar: Unterirdische Pumpspeicher

Wie bereits mehrfach erwähnt, sind Pumpspeicher die verbreitetste Methode elektrische Energie in großer Menge abzuspeichern. Leider hat diese Technologie einige Nachteile, die gerade für die globale Energiewende problematisch sind. 

Damit ein Pumpspeicherkraftwerk arbeitet, benötigt man deutliche Höhenunterschiede, mindestens 400 Meter, besser mehr. Zudem sollte man große Täler haben, die man mit Staudämmen absperren darf und fluten kann, nicht optimal umweltverträglich.
Nicht zu vergessen, Photovoltaik spielt sich in vielen Gegenden auf der Welt in der Wüste ab, nicht gerade mit Wasser gesegnet. Was tun?

Alte Bergwerke fluten

Eine erste Idee ist, alte Bergwerke zu fluten und dann das Wasser wieder hoch zu pumpen. Dabei wird die überschüssige  Energie von den Pumpenmotoren absorbiert und bei Bedarf kann man das Wasser wieder in die Tiefe stürzen lassen und über eine Turbine leiten. 
Je nach Anordnung benötigt man nur ein Oberbecken oder man nutzt zwei, unterschiedlich tiefe liegende Stollen und ist damit vollständig unterirdisch. Klingt verlockend, hat aber einen Haken: 

Bergwerke sind nicht gerade für das Speichern von Wasser ausgelegt. Die Stollen sind nur so gut stabilisiert, dass man Bergbau betreiben kann. Wasser regelmäßig einfüllen und abzupumpen erfordert eine sehr gute Abdichtung, damit keine Chemikalien aus dem umliegenden Gestein gelöst werden die das Wasser stark verschmutzen oder gar den Stollen zerstören.

Pumpspeicherkraftwerk, untertägig

Rechnet man die Sache durch, sieht man auch, dass die Energiemengen überschaubar bleiben. Angenommen man hat 1 km Stollen mit 20m² Querschnitt, einmal in 200m Tiefe und einmal in 700m Tiefe, dann kann man damit 

E = 20m² * 1000 m * 500 m * 1000 kg/m³ * 9,81 N/kg / 3.600.000 kW/J

E = 27.250 kWh = 27 MWh

einspeichern. 

Das klingt zwar gut, aber wenn man weiß, dass ein übliches Pumpkraftwerk 8.000 MWh speichern kann, ist es nicht sehr beeindruckend. Insbesondere, wenn man bedenkt mit welchem Aufwand die Stollen abgedichtet werden müssen. 

Würde man solch ein Kraftwerk neu bauen und einfach annehmen, dass die Herstellung von Volumen unter Tage ca. 800 Euro/m³ kosten, dann findet man einen Preis von 43,2 Mio. Euro, was umgelegt auf die Speicherkapazität 1600 Euro/kWh bedeutet, ohne Zubehör wie Pumpen und Turbinen.

Kraftwerk im Schacht

Eine Alternative ist, den Schacht zu nutzen, der ist ja oft sehr tief. Wird im Schacht, in halber Tiefe, eine Decke eingezogen, der die obere Hälfte von der Unteren trennt, dann kann man Wasser in die untere Hälfte füllen, über eine Pumpe in die obere Hälfte pumpen und genau wie oben beschrieben, elektrische Energie speichern und wieder gewinnen.

Schacht-Pumpkraftwerk

Auch hier wieder eine Energiebetrachtung:
Der Schacht soll 1000 m tief sein, nicht unüblich im Bergbau, und einen Durchmesser von 20 m haben.

E = 3,14* 10*10m² * 500 m * 500 m * 1000 kg/m³ * 9,81 N/kg / 3.600.000 kW/J

E = 214.020 kWh = 214 MWh

Das Kraftwerk kann immerhin eine nennenswerte Energiemenge speichern! Allerdings ist der Bau von Schächten nicht wirklich billig, geht man von Baukosten im Bereich von 250 Mio € aus, dann kostet die Speicherkapazität 1.168 Euro/kWh. Allerdings ist hier noch keinerlei Maschinen gekauft, zudem benötigt man eine zweiten Schacht um an die Pumpe und Turbine zu kommen. 

Gravity Power mit Betonkolben

Eine Alternative ist es, in dem Schacht statt Wasser einen Betonkolben hydraulisch auf- und absteigen zu lassen. Dies hat die Firma Gravity Power sehr weit entwickelt. 

Dort wird in einem Schacht ein Betonkolben einbetoniert und gegen die Umgebung abgedichtet. Die Dichtung muss bei 500 m Kolbenhöhe etwa 80 Bar Druck standhalten. Den unebenen Schachtwände muss die Dichtung geeignet folgen. 

Schacht-Kolben-PSW nach Gravity Power

Im Betrieb wird beim Einspeichern von Strom mit der Pumpe Wasser unter den Kolben gepumpt und dieser damit angehoben, bei der Rückgewinnung drückt der Kolben Wasser über die Turbine und sinkt dabei ab.

Nimmt man wieder einen Schacht mit 20 m Durchmesser und 1000 m Tiefe kann man damit bei einer Betondichte von 2600 kg/m³ folgende Menge Energie speichern:

E = 3,14* 10*10m² * 500 m * 500 m * (2600 - 1000) kg/m³ * 9,81 N/kg / 3.600.000 kW/J

E = 342.433 kWh = 342 MWh

Speichern. Dabei ist allerdings der Systempreis etwas höher, da man ja den Betonzylinder herstellen muss. Dieser besteht auch 157.000 t Beton, den man optimistisch für 300 € pro Tonne hergestellt und verarbeitet bekommt. Damit kostet der Kolben 47 Mio. Euro. Die Baukosten liegen daher bei dieser Variante bei ca. 297 Mio. Euro. Damit kostet die Speicherkapazität 867 Euro/kWh. Dieser Preis liegt etwas unterhalb des reinen Schachtkraftwerks, allerdings handelt man sich damit ein nicht unerhebliches Problem beim Abdichten ein. 

Lageenergiespeicher vom Typ Gravity Storage

Eine weitere fast unterirdische Lösung ist ein Speicher, bei dem ein Felskolben aus dem umliegenden Gestein ausgeschnitten wird und ebenfalls mit Wasserdruck angehoben wird. 

Der Speicher arbeitet, indem bei Stromüberschuss eine Pumpe Wasser aus einem "Unterbecken" unter den Felskolben leitet und diesen dabei anhebt. Bei Strombedarf presst der Felskolben das Wasser wieder über eine Turbine und Strom wird mit einem Generator erzeugt.

Lageenergiespeicher nach dem Verfahren von Heindl

Auch für dieses Kraftwerk sollen, analog zu den vorherigen Rechnungen, die Kapazität und Kosten eingeschätzt werden. Nimmt man einen Durchmesser und Tiefe von 250 Meter für den Felskolben und eine Hubhöhe von 100 Meter, kann man bei einer Gesteinsdichte von 2600 kg/m³ folgende Energiemenge speichern:

E = Energie Kolben - Energie Wasser

E = (3,14* 125 * 125 m² * 250 m * 100 m * 2600 kg/m³ - 3,14* 125 * 125 m² * 100 m * 200 m * 1000 kg/m³) * 9,81 N/kg / 3.600.000 kW/J

E = 6.016.289 kWh = 6.016 MWh

Diese Energiemenge liegt im typischen Bereich eines Pumpspeicherwerks, aber wie teuer wird der Bau eines solchen Speichers? 

Hier wird die massiven Vereinfachung angenommen, dass analoge Preise pro Kubikmeter unter Tage gelten, wie oben verwendet. Dies waren ca 800 Euro/m³ Baukosten für Schachtvolumen.
Im Lageenergiespeicher wird jetzt eine Schlitzbreite von drei Metern in allen Richtungen angenommen. Damit erhält man für das "Schachtvolumen" V = Wand * Boden

V = 3,14 * 250 m *250 m *3 m + 3,14 * 125² m² * 3 m

V = 736.000 m³

und damit Baukosten von 589 Millionen Euro, das ergibt Kosten pro kWh Speicherkapazität von 97 Euro pro kWh. Wie bei allen anderen Rechnungen wurde auch hier Pumpe, Turbine und all die anderen Sachen, die solch ein Kraftwerk teuer machen können nicht berücksichtigt. Es geht um die reine Analyse der prinzipiell möglichen Geometrien von Pumpspeichern, die im wesentlichen unterirdisch arbeiten.

Fazit

Unterirdische Speicherkraftwerke sind von den Kosten nicht in einer anderen Welt als Batterien oder obertägige Pumpspeicher. Allerdings gibt es je nach Technologie erhebliche unterschiedliche technische Probleme und spezifische Kosten. 

Am kostengünstigsten erscheint mir der Lageenergiespeicher "Gravity Storage", allerdings muss ich zugeben, dass ich in diesem Fall voreingenommen bin. Gerne lasse ich mich aber von anderen Rechnungen überzeugen. 

Auf jeden Fall sind alle vorgestellten Technologien auch in trockenen Gebieten für lange Zeit nachhaltig einsetzbar. Aspekte die bei Batterien, Lebensdauer, Rohstoffe, bisher eine Schwäche darstellen.

Mehr zu Schwerkraftspeicher


Freitag, 16. Juni 2017

Student Energy Summit 2017 SES2017

Internationaler Student Energy Summit (SES)

Seit 2009 findet alle zwei Jahre der SES statt, eine Konferenz für Studenten die sich für Energie interessieren. In diesem Jahr, 2017, war ich als Sprecher eingeladen, weil offenbar mein früherer TEDx Auftritt zum Thema Lageenergiespeicher (Gravity Storage) gut gefallen hat.

Das Event ist wirklich sehr international, die Studenten waren aus 80 Ländern, ehrlich gesagt habe ich noch nie auf einer Konferenz mit derart weltweit verteilten Teilnehmern gesprochen (Herkunft der Studenten).

Herkunft der Teilnehmer, kein relevantes Land fehlt.

Anreise

Merida in Mexiko liegt leider für uns abgelegen, so dass ich über Houston, Texas, anreisen musste.

Schon der Gangway zum Flugzeug hat zufällig mit Energie zu tun.

Auf dem Flug fallen dem Beobachter beim Blick aus dem Fenster natürlich die Fracking-Felder in Texas auf.

Fracking in Texas.

Nach 16 Stunden, mit einer Zwischenlandung, erreiche ich endlich Merida, noch vor der Zollabfertigung komme ich mit dem Energy Commissioner von Kalifornien, David Hochschild, ins Gespräch, jetzt weiß ich, dass ich am richtigen Ort bin.

Blick aus dem Hotel: Solarthermische Anlagen!

Eröffnung der Konferenz

Die Eröffnung der Konferenz beginnt am späten Nachmittag in der Oper von Merida. Ein etwas merkwürdiges Bild geben die hochrangigen Politiker vor der Opernkulisse ab, ein Arrangement, das nicht Absicht war und nicht unumstritten bei den teilnehmenden Politikern. 

Vom Governor von Yukatan bis zum mexikanischen Energieminister ist viel Prominenz gekommen.

Die Reden der Politiker, unter andrem des Energieministers, werden alle auf spanisch in erheblicher Lautstärke gehalten, so dass man selbst als aufmerksamer Zuhörer wenig von der Simultanübersetzung versteht.

Wie es der Zufall will, soll in den nächsten Tagen die große Privatisierung der Energiewirtschaft in Mexiko, von Öl bis Strom, erfolgen, also ein gutes Thema für die Sprecher. Einige zynische Hinweise auf Trump, der das Pariser Abkommen zur CO2 Vermeidung ablehnt, haben natürlich auch nicht gefehlt.

Deckenfresko in der Oper

Danach gab es eine echte Opernaufführung, Pagliacci von Leoncavallos über Schauspiel und Realität, die allerdings die Sitzreihen deutlich gelichtet hat.

Vorträge und Panels

Die Vorträge waren zumeist in Paneldiskussionen eingebunden. Im ersten Panel stand die Frage, was ist eine echte nachhaltige Entwicklung im Vordergrund. neben technischen Fragen sind auch sozial Fragen für eine gute Entwicklung wichtig.

Alle waren sich einig, dass Fotovoltaik für viele Länder eine große Entwicklungschance bietet, bei der, ähnlich wie bei der Einführung des Mobiltelefons, ein Entwicklungsschritt übersprungen (Leapfrog) werden kann.

Erstes Panel, links die "Mitgründerin" von SES

In der zweiten Session durfte ich im Panel "What's Next, the technological transition" sprechen.
Ich habe neben der Arbeitsweise des Gravity Storage Systems auch allgemeine Aspekte zum starken Wachstum von PV hervorgehoben.

Die Lernkurve bei PV ist für die globale Energiewende wichtig.
Im gleichen Track war noch ein Vortrag über Geothermie, eine unterschätzte Energiequelle, wie der Referent Paul Brophy meinte. 

Spannend war ein Vortrag am Nachmittag über die Zukunft von Öl, gehalten von Chris Sladen, Präsident von BP Mexiko. Er hat mit Folien aus der BP Studie auf das weitere Wachstum des Ölverbrauchs hingewiesen. Die Frage stellt sich natürlich, ob das Zweckoptimismus ist, oder ob das wirklich so kommt.

2. von Links: Chris Sladen, BP daneben aus Saudi Arabien David Michael Wogan.

Zum Schluss gab es noch ein Panel, das die ehemalige Bürgermeisterin Londons, Dame Fiona Woolf, geleitet hat. Während der Diskussion zum Thema Energiepolitik hat ein Zeichner live eine Art visuelles Protokoll der Sitzung angefertigt.

Neben Mrs. Woolf David Hochschild aus Kalifornien


David Hochschild betonte, dass in Kalifornien die drei negativen Vorhersagen; Arbeitslosigkeit, Wirtschaftsstagnation und Blackout, die durch die Umstellung auf erneuerbare Energien kommen sollten, nicht eingetroffen sind. Über 100.000 neue Arbeitsplätze, nicht zuletzt bei Tesla, höheres Wirtschaftswachstum als im Rest der USA und kein einziges Blackout!

Wichtig war ihm weiterhin, darauf hinzuweisen, dass langfristig angelegte politische Rahmenbedingungen sehr wichtig für Investitionen in Erneuerbare sind, Programme, die nur ein bis zwei Jahre laufen, bringen nichts. Ein langlaufendes Programm über 15 Jahre kann sehr erfolgreich sein.

Zweiter Kongresstag

Der Tag begann mit einem Vortrag im "Centro de Investigación Científica de Yucatán, A.C. (CICY)" vor Studenten. Eine Begleitveranstaltung zum SES2017 in Mexiko.

Das Wachstum der erneuerbaren Energiequellen Sonne und Wind in meinem Vortrag erläutert.

Anschließend ging es im Kongresszentrum mit einem sehr spannenden von Guillaume Fouché von Bloomberg weiter. Er zeigte mit einem Feuerwerk gut aufbereiteter Folien die Megatrends im Energiebereich auf.

Das Ende des Kohlezeitalters symbolisiert durch die Installation von Solarzellen auf dem Dach des Kohlemuseums in Kentucky.

Neben den Symbolbildern wie dem obigen, auch eine Grafik, die zeigt, dass, durch Optimierung der Standorte, die Windenergie wesentlich wirtschaftlicher geworden ist. Ich vermute, das liegt auch daran, dass der weltweite Anteil in Deutschland aufgestellter Windkraftwerke zurückgeht, die notorisch wenig Wind ernten können.

Winkraftwerke werden international immer effizienter, von 12% auf 32% innerhalb von 20 Jahren.

Die Zukunft gehört dem Elektroauto, die Verteilung der vorhandenen und geplanten Elektroautos als Grafik in Abhängigkeit von Reichweite und Größe bis 2020.

Alle werden Elektroautos liefern, wenn die Ankündigungen stimmen. (Bild, wie alle anderen, zum Vergrößern anklicken)

Nach so viel Zukunft durfte ich erst einmal für meine CO2-Emissionen abbitte leisten. für den Flug aus Europa habe ich wohl so viel CO2 erzeugt, dass dies nur durch 50$ als Spende an ein Regenwaldprojekt in Mexiko ausgeglichen werden kann. 

50$ für den Regenwald, meine Ablasszahlung für den CO2 Fußabdruck meiner Anreise.

Am Nachmittag gab es dann einen Riesenworkshop, in dem die Studenten die Themen, die ihnen wichtig waren, bearbeiteten. An 26 Tischen wurden, mit sehr unterschiedlichem Temperament, die Themen bearbeitet. Von der Frage zur Kernenergie bis zu solaren Smartphone Ladegeräten war alles dabei.

Die Themen der 26 Workshops

Anschließend wurde präsentiert, mit Schlagworten wie "New, Clear" (Nuklear) haben sich einige für Kernenergie eingesetzt, eine Gruppe hat ein Wasserrad zur Generation von Strom an abgelegenen Fluss-Siedlungen gezeigt.
Andere wollen die Photosynthese verbessern oder eine Energie App für Kinder schreiben. Die Resultate waren sehr bunt und wurden lustig präsentiert.


Präsentation der Resultate, hier nachhaltige Gemeinschaften.

Am Abend gab es noch eine sehr laute Party vor einer alten Kolonialzeit Villa.

Quinta Montes Molina, a great location!


Workshops

Nach der Party lies das Mexikanische Organisationsteam den Tag sehr ruhig angehen, um 11h starteten nach längerer Busanreise am Campus der Yukatan Universität mitten im Urwald mehrere Workshops.

Tief im Wald liegt der Campus und Technologiepark. (Die vierspurige Autobahn war sehr leer)


Die Studenten waren mit großer Begeisterung dabei, wenn auch die Fragestellungen in der sehr lauten Atmosphäre eher untergegangen sind. Trotzdem eine interessante Erfahrung wenn an einem Tisch junge Menschen aus allen Kontinenten sitzen.

Wir tanzen die Wasserkraft.

Rückflug

Auf dem Rückflug noch ein Blick auf die Erzeugung von CO2 mit deutscher Braunkohle, traurig!

Schlimmer als Fracking, Braunkohle Tagebau am Rhein.


Weitere Berichte von Kongressen und Konferenzen

Freitag, 12. Mai 2017

Energy Storage World Forum Konferenzbericht

Trends bei Energiespeicher 2017 

In Berlin fand vom 10-11. Mai das 10. ESWF statt. Ich habe den Teil zum Thema Großspeicher besucht und eigentlich erwartet, auch einige neue Ansätze zu Pumpspeicher und andere Technologien zu erfahren. Das war eher nicht der Fall, es ging hauptsächlich um Batterien.
Abschlusspräsentation auf dem ESWF, der Frauenanteil war nicht immer so hoch.

Was ist ein Energiespeicher

Das Problem liegt wohl eher darin, dass unter Energiespeicher jeder etwas anderes versteht. Aktuell scheint es so, dass im Markt für Großspeicher im wesentlichen Speicher beschrieben werden, die große Leistung für kurze Zeit liefern können. Das sind wichtige Systeme in einer Welt, in der die klassischen thermischen Kraftwerke langsam von Solar- und Windkraftwerken ersetzt werden.
Sehr unterschiedliche Speicher: Strom, Lebensmittel, Daten, und sehr unterschiedliche Reichweiten, aus dem Vortrag von  Julian Jansen, IHS Markit

Regelenergie

Um das Problem genauer zu verstehen, muss man wissen, dass ein normales Kohlekraftwerk nicht bei voller Leistung läuft, sondern für kurzzeitige Schwankungen immer noch eine gewisse Leistungsreserve (~10%) vorhält. Kommt es jetzt zu einem zusätzlichen Bedarf, weil gerade eine große Maschine eingeschaltet wird, muss einfach die Leistung etwas hochgeregelt werden. 
Bei einer Solarzelle oder auch bei einem Windkraftwerk geht das nicht, diese werden normalerweise hundert Prozent der Leistung an das Netz abgeben, obwohl theoretisch auch weniger möglich wären, was aber offensichtlich eine Verschwendung wäre.
Einsatzgebiete von großen Batterien zur Netzstabilisierung, Quelle: eon

Um diese Regelleistung ohne den Aufwand eines herunter geregelten Kohle-, Erdgas- oder sonstigen thermischen Kraftwerks zu managen, scheinen Batterien zusammen mit leistungsfähiger Elektronik einen guten Dienst zu tun.  

Typisch an diesen Systemen ist, dass sie nur sehr kurz Energie liefern können, typische Werte liegen unter einer Stunde.

Speicherbedarf für große Energiemengen, Dunkelflaute

Eine der spannendsten Fragen in der Speicherbranche ist der Bedarf an Speicher für große Energiemengen, also nicht um kurzzeitig das Netz zu stabilisieren sondern um etwa elektrische Energie vom Tag aus Solarenergie in die Nacht zu verschieben.

Hier war ein Vortrag von Dr. Björn Peters interessant, der für Deutschland die Situation mit 100% Wind und Solarenergie berechnet hat. Sind 120 GW PV und 120 GW Wind installiert, so genügt dies langfristig theoretisch um den Strombedarf zu decken. Allerdings müssen ausreichend Speicher zur Verfügung stehen. In dem Modell wurde ein perfekter Speicher mit 100% Wirkungsgrad angenommen (Reale Speicher liegen eher bei 80 %, aber die Differenz ist nicht entscheidend).

Die Überraschung ist, dass für die Phasen ohne Wind und Sonne, sogenannte Dunkelflaute, massive Speicherkapazitäten nötig sind. So wäre zur überbrückung der Dunkelflaute im Herbst 2016 etwa 80.000 GWh Speicherkapazität erforderlich gewesen. Bedenkt man, dass nur 40 GWh in Deutschland verfügbar sind, wird das Problem offensichtlich.
Die Dunkelflaute, der gefährliche Elefant, wie er in der Zeitschrift Sonne Wind & Wärme dargestellt wird.

Vermutlich können solche Phasen nur mit thermischen Reservekraftwerken, ob dies nun Blockheizkraftwerke oder Gasturbinen sind, überbrückt werden.

Alternativ könnte man Stromleitungen nach Afrika oder Sibirien legen, die insgesamt 8.000 km lang wären und eine Leitungskapazität von mindestens 50 GW benötigen, leider, im aktuellen politischen Umfeld, eher schwierig umzusetzen.

Wachstum des Speichermarkts

Sicher werden die extremen Speicher nicht so schnell kommen, aber das Wachstum der Speicher ist größer als das Wachstum der PV und Wind Märkte, da an vielen Orten das Netz langsam an die Grenzen seiner Steuerfähigkeit kommt. 

Speicherbedarf im UK erreicht 15 GW innerhalb von 15 Jahren

In mehreren Vorträgen wurden Folien aufgelegt, die den Speicherbedarf, zumeist aufgeschlüsselt nach Hausbatterien ("behind the meter") und anderen Batterien im Netz, analysierten. Zumeist wird hier nicht von Speicherkapazitäten sondern von Leistungen gesprochen, da es noch um die Stabilisierung des Netzes geht. 
Gegenüber heute ist ein Faktor 10 bis 100 innerhalb von 15 Jahren zu finden.
Der größte Energie Speichermarkt ist wohl in 2017 in Südkorea! (Quelle: Jansen, IHS Markit)

Warum besuche ich solche Konferenzen?

Am Ende der Konferenz hat man immer das Gefühl, die Aussagen schon ein dutzend Mal gehört zu haben. Allerdings ist auch interessant, was fehlt, niemand hat mehr vom Power to Gas gesprochen und Wasserstoff ist ebenfalls nicht vorgekommen. 
Sehr gefreut hat mich, dass der Moderator meine Speichertechnologie, Gravity Storage, als mögliche Lösung für Großspeicher erwähnt hat. 
Ein weiterer wichtiger Punkt sind immer die Gespräche in der Kaffeepause, man erfährt viel über Märkte und kann seine Kontakte gut pflegen.

Bis zur nächsten Konferenz, weitere Konferenzberichte finden sich unter:

Sonntag, 26. März 2017

Wieviel Solarzellen und Speicher braucht die Welt?

Solarenergie für Deutschland Europa und die Welt

Es gibt in der Solar-Szene ein Bild (Bild 1), dass vermutlich fast jeder kennt, es zeigt, wie groß der Flächenbedarf ist, wenn die Welt auf Solarenergie umgestellt wird. Es wurde, soweit mir bekannt, von Frau Nadine May erstmals in ihrer Diplomarbeit bei der DLR veröffentlicht [1]:
Bild 1: Flächenbedarf für Solarkraftwerke, nach Nadine May [1]
Dieses Bild ist weit verbreitet und soll auf seine Richtigkeit überprüft werden. Zunächst ist zu bemerken, dass Algerien das Land das die Quadrate für die Welt und Europa enthält und Libyen, das Land das möglicherweise die Deutschen Solarkraftwerke bekommt, keine Kolonien mehr sind.

Die Quadrate haben eine Kantenlänge von: Welt 254 km,  Europa 110 km und Deutschland nur 45 km.

Wie groß ist der Energiebedarf der Welt?

Der Energieverbrauch der Welt wächst ständig (Siehe Bild 2), daher kann man schlecht den Energiebedarf nur mit einem Bezugsjahr angeben. Aktuell liegt der Bedarf bei über 30.000 TWh (30.000.000.000.000 kWh) wenn man die Angaben der Internationalen Energieagentur auswertet. Ich habe dabei Umwandlungsfaktoren für bestimmte Energieformen zu Strom berücksichtigt.

Bild 2: Weltweiter Energiebedarf für Strom, Transport und alle anderen Formen
Diese Energie soll nun mit Solarzellen aufgefangen werden und in Strom umgewandelt werden. Dabei gibt es mehrere Faktoren zu berücksichtigen, den Wirkungsgrad, die Einstrahlung im Lauf eines Jahres und die notwendige Speicherung der Energie für die Nacht.

Solarzellen aus Silizium erreichen einen Wirkungsgrad von rund 20% und sind aktuell die günstigste Methode in großem Umfang Strom aus Solarenergie zu erzeugen.

Die Einstrahlung ist in verschiedenen Regionen der Erde sehr verschieden, insbesondere muss man immer zwischen direkter und globaler Einstrahlung unterscheiden. Für die Photovoltaik (PV) spielt nur die globale Einstrahlung eine Rolle. Daher wird nur diese Betrachtet.

Bild 3: Globalstrahlung senkrecht zum Boden (Quelle: WEC [2])
Auf der Karte sieht man, dass viele Gebiete eine jährliche Einstrahlungsleistung von 2000 kWh pro Jahr haben, insbesondere die Sahara, aber auch auf anderen Kontinenten (Ausnahme: Europa!), derartig gute Standorte zu finden sind.

Notwendige Flächen

Die notwendigen Flächen der Solarzellen kann man jetzt einfach berechnen. Für die Welt benötigen wir 30.000.000.000.000 kWh im Jahr, da ein Quadratmeter eine Einstrahlung von 2000 kWh hat wären das theoretisch 15.000.000.000 m² oder 15.000 km². 
Jetzt kommt der Wirkungsgrad ins Spiel, da nur 20% in Strom umgewandelt werden, benötigen wir die fünffache Fläche, das sind 75.000 km². Allerdings muss man die Zellen aufbauen können und benötigt Wege und weitere Flächen für Wechselrichter und Speicher, das dürfte den Flächenbedarf verdoppeln. Damit liegt man bei 150.000 km².
Der Transport und die Speicherung von Energie, die zwingend nötig ist, da Nachts die Sonne nicht scheint, wird etwa weitere 25% der Energie auffressen, damit wären wir bei 200.000km².

Dies entspricht einem Quadrat von 448 km Kantenlänge, ganz grob gesagt doppelt so groß wie in der Zeichnung.

Faire Welt

Aktuell verbrauchen nur wenige Menschen viel Energie und viel Menschen wenig Energie. Ich bin überzeugt, dass Langfristig alle Menschen mindestens den Lebensstandard wie in Deutschland erreichen wollen. Dafür dürfte pro Person eine Energiemenge von 15.000 kWh/a notwendig werden. Es gibt einige Länder, die bereits heute einen deutlich höheren Energiebedarf haben aber wir wollen hoffen, dass Energieeffizienz auch eine gewisse Einsparung bewirkt. 

Bei einer Weltbevölkerung von 8 Mrd. Menschen wird das einen jährlichen Energiebedarf von 120.000 TWh oder 120.000.000.000.000 kWh, also das Vierfache des bisherigen Bedarfs, ergeben. Damit würde sich die Fläche mit Solarzellen immerhin auf ein Quadrat mit einer Kantenlänge von 1000 km vergrößern (Bild 4).

Bild 4: Die Welt vollständig mit Solarenergie in Zukunft versorgen

Weiterhin ist die Fläche von einer Million Quadratkilometer immer noch klein im Vergleich zur Sahara, aber ein ernsthafter Teil der festen Erdoberfläche. Die Welt hat etwa 15 Millionen Quadratkilometer sonnige Wüsten, das bedeutet, etwa 1/15 dieser Fläche muss in Zukunft mit Solarzellen für die Energieversorgung verwendet werden. 

Speicherbedarf

Geht man davon aus, dass die Energie mindestens für einen Tag gespeichert werden können muss, so erfordert das eine Speicherkapazität von 330 TWh (330.000 GWh), 
zum Vergleich: Deutschland hat Pumpspeicher mit einer Kapazität von 0,04 TWh. 
Sollten große Lageenergiespeicher mit 80 GWh Kapazität (500 m Durchmesser) das Problem lösen, müssten davon beachtliche 4000 Stück gebaut werden.

Will Elon Musk das mit Batterien aus der Gigafactory lösen, so muss die Gigafactory bei einer geplanten Kapazität von 50 GWh pro Jahr, über 6000 Jahre Produzieren oder 400 Gigafactories 15 Jahre lang produzieren um erstmals die Kapazität zur Verfügung zu stellen und immer weiter Produzieren, da Batterien nach 15 Jahre ersetzt werden müssen.

Gigantische Umstellung

Soll die weltweite Umstellung auf Solarenergie gelingen, werden gewaltige Bauten in Form gigantischer Solarfelder nötig. Sicherlich reichen dafür nie die Dachflächen. Weiterhin geht es um Investitionen die in der Größenordnung des globalen Bruttosozialprodukts von einem Jahr liegen (80.000 Mrd. $). Das klingt viel, ist aber von der Menschheit zu schaffen, insbesondere wenn man bedenkt, dass danach Energie sauber, ohne CO2 und zu geringen Kosten produziert wird.

Ich glaube, wir schaffen das!


Zum Thema: warum Solarstrom und Speicher billiger werden, die Lernkurve.

Quellen:

[1] Eco-balance of a Solar ElectricityTransmission from North Africa to Europe, Diploma Thesis of Nadine May, Braunschweig Mai 2005